SYMMETRICAL ISOMERS OF arachno-5,5'-X-(6,9- $C_2B_8H_{13}$)₂ (X = 0 AND OSO₂O) COMPOUNDS

Bohumil Štíbr^a, Jaromír Plešek^a, Tomáš Jelínek^a, Stanislav Heřmánek^a, Konstantin A. Solntsev^b and Nicolai T. Kuznetsov^b

^a Institute of Inorganic Chemistry,

Czechoslovak Academy of Sciences, 250 68 Řež near Prague, Czechoslovakia and

^b N. S. Kurnakov Institute of General and Inorganic Chemistry, Academy of Sciences of U.S.S.R, Leninski Prospekt 31, Moscow, U.S.S.R.

Received June 13th, 1986

Treatment of the $[6,9-C_2B_8H_{10}]Na_2$ salt with concentrated sulphuric acid produces two compounds of the general formula σ , ϱ' -5,5'-X-(6,9-C_2B_8H_{13})_2, where X = O or OSO₂O, the constitution of which was established on the basis of their NMR data.

Recently^{1,2} we have reported a general reaction of the *nido*- $[6,9-C_2B_8H_{10}]^2$ dianion³ with anhydrous hydrogen halides giving high yields of 5-halogenated derivatives of the *arachno*- $6,9-C_2B_8H_{14}$ dicarbaborane⁴. The course of the reaction is best explained as a consequence of stereoselective addition of hydrogen halides to the $B_{(5)}$ - $C_{(6)}$ bond within the framework of $[6,9-C_2B_8H_{10}]^2$ -. Slightly hydrated hydrogen fluoride was found to yield oxidoderivative $5,5'-O-(6,9-C_2B_8H_{13})_2$ as a result of the addition of water^{1,2}. We now report a more convenient preparative route to the latter species and discuss the structure of compounds with the 5,5'-linkage of two *arachno*- $6,9-C_2B_8H_{13}$ moieties (for numbering see Fig. 1).

Reaction of the $[6,9-C_2B_8H_{10}]Na_2$ salt (I) with concentrated sulphuric acid gives rise to two main products, $5,5'-O-(6,9-C_2B_8H_{13})_2$ (II) and $5,5'-OSO_2O-(6,9-C_2B_8H_{13})_2$ (III). Compound II is identical with the main product of the reaction of anion I with c. 97% hydrogen fluoride^{1,2} and the mass and NMR spectral data of III are clearly compatible with the $B(_5)$ —OSO₂O— $B_{(5')}$ linkage of two 6,9- $C_2B_8H_{13}$ subunits.

There are two possible modes of the linkage, the first one producing symmetrical σ , ϱ' -derivative (A), and the second one, leading to a (+) and (-) pair of σ , σ' - and ϱ , ϱ' -enantiomorphs (B) (the depicted basic orientation is that with open hexagonal faces turned downwards, $B_{(1-4)}$ atoms are omitted for clarity, X = O and/or OSO₂O. Symbols σ and ϱ denote clockwise and anticlockwise numbering⁵, respectively).

The ¹¹B NMR spectra of both compounds II and III, consisting of one $B_{(5)}$ singlet and seven doublets of equal intensisties, suggest the symmetrical alternative A. The

results of the recent X-ray diffraction study⁶ on compound II produced conclusive evidence in support of this constitution.

The only way how to achieve the found explicit formation of the σ , ϱ' -derivatives II and III is the dehydration of two molecules of an unstable 5-HO-6,9-C₂B₈H₁₃ derivative^{1,2} by excess sulphuric acid. An alternative mechanism, such as stepwise reaction of water or sulphuric acid with two molecules of anion I, would also produce the asymmetrical derivative B.

EXPERIMENTAL

¹H (200 MHz) and ¹¹B (64·18 MHz) NMR spectra were obtained on a Varian XL-200 equipment in deuteriochloroform at 25°C. Chemical shifts are given in δ (ppm, referenced to tetramethyl-

FIG. 1

Gross geometry and numbering system of arachno-6,9-C2B8H14

Fig. 2

Simplified representation of the two possible modes of the 5,5'-linkage of $6,9-C_2B_8H_{13}$ subunits (X = O or OSO₂O, B (1-4) atoms omitted for clarity). Basic orientation is that with open hexagonal faces turned downwards, symbols σ and ρ denote clockwise and anticlockwise numbering⁶, respectively

Collection Czechoslovak Chem. Commun. [Vol. 52] [1987]

silane and $BF_3.O(C_2H_5)_2$, positive values downfield). TLC was performed on Silufol sheets (silica gel on aluminium foil) in benzene. Melting points were determined in sealed capillaries and are uncorrected.

$arackno-5,5'-O-(6,9-C_2B_8H_{13})_2$ (II) and $5,5'-OSO_2O-(6,9-C_2B_8H_{13})_2$ (III)

Concentrated sulphuric acid (5 ml) was added to a suspension of I (0.8 mmol) in benzene (50 ml) and the mixture was shaken for 3 h. The benzene layer was separated, a new portion of benzene (25 ml) was added and the mixture was stirred for additional 3 h. Combined benzene fractions were evaporated *in vacuo* to a volume of c. 15 ml and placed onto a column (2.5 × 30 cm) packed with silica gel. Benzene eluted two main fraction of R_F 0.48 and 0.20 (checked by TLC). The pure fractions were combined and evaporated *in vacuo* leaving two white products. The first one was crystallized from benzene-cyclohexane (1 : 1) to give 0.3 g (48%) of crystals the NMR spectra of which were identical with those of the recently prepared^{1,2} carborane *II*. The second product was crystallized in the same way to afford 0.2 g (24%) of *III* as crystals nonmelting up to 260°C; ¹H NMR spectrum: δ 1.24 (1 H, s, CH_(eq)), 1.05 (1 H, s, CH_(eq)), -0.15 (1 H, s, CH_(ax)), -0.32 (1 H, s, CH_(ax)), -2.66 (2 H, br s, μ H); ¹¹B NMR spectrum: δ_B 4.92 (1 B, d, J_{B-H} c. 180, $B_{(2,2')}$), 1.63 (1 B, d, c. 170, $B_{(4,4')}$), -3.23 (1 B, s, 49, $B_{(5,5')}$), -16.99 (1 B, d, c. 160/45, $B_{(7,7')}$), -19.29 (1 B, d, $B_{(10,10')}$), -20.73 (1 B, d, $B_{(8,8')}$), -37.20 (1 B, d, 150, $B_{(1,1')}$), -39.40 (1 B, d, 150, $B_{(3,3')}$); *m*/z 346, corresponding to [C4B₁₆H₂₆SO₄]⁺.

REFERENCES

- Štibr B., Janoušek Z., Plešek J., Jelínek T., Heřmánek S.: J. Chem. Soc., Chem. Commun. 1985, 1365.
- 2. Štíbr B., Janoušek Z., Plešek J., Jelínek T., Heřmánek S.: This Journal 52, 103 (1987).
- 3. Štibr B., Janoušek Z., Baše K., Heřmánek S., Plešek J., Zakharova I. A.: This Journal 49, 1891 (1984).
- 4. Štibr B., Plešek J., Heřmánek S.: This Journal 39, 1805 (1974).
- 5. Plešek J., Heřmánek S., Štíbr B.: This Journal 34, 3233 (1969).
- 6. Solntsev K. A., Kuznetsov N. T., Štíbr B., Plešek J., Jelinek T.: Koord. Khim., in press.

Translated by the author (B. Š.).