SYMMETRICAL ISOMERS OF arachno-5,5'-X-(6,9-C $\left.\mathbf{C}_{2} \mathbf{B}_{8} \mathbf{H}_{13}\right)_{2}$ ($\mathrm{X}=\mathrm{O}$ AND $\mathrm{OSO}_{2} \mathrm{O}$) COMPOUNDS

Bohumil Štíbr ${ }^{a}$, Jaromír Plešek ${ }^{a}$, Tomáš Jelínek ${ }^{a}$, Stanislav Heřmánek ${ }^{a}$, Konstantin A. Solntsev ${ }^{b}$ and Nicolai T. Kuznetsov ${ }^{b}$

${ }^{a}$ Institute of Inorganic Chemistry, Czechoslovak Academy of Sciences, 25068 Rež near Prague, Czechoslovakia and
${ }^{b}$ N. S. Kurnakov Institute of General and Inorganic Chemistry, Academy of Sciences of U.S.S.R, Leninski Prospekt 31, Moscow, U.S.S.R.

Received June 13th, 1986

Treatment of the $\left[6,9-\mathrm{C}_{2} \mathrm{~B}_{8} \mathrm{H}_{10}\right] \mathrm{Na}_{2}$ salt with concentrated sulphuric acid produces two compounds of the general formula $\sigma, \ell^{\prime}-5,5^{\prime}-\mathrm{X}-\left(6,9-\mathrm{C}_{2} \mathrm{~B}_{8} \mathrm{H}_{13}\right)_{2}$, where $\mathrm{X}=\mathrm{O}$ or $\mathrm{OSO}_{2} \mathrm{O}$, the constitution of which was established on the basis of their NMR data.

Recently ${ }^{1,2}$ we have reported a general reaction of the nido- $\left[6,9-\mathrm{C}_{2} \mathrm{~B}_{8} \mathrm{H}_{100}\right]^{2-}$ dianion ${ }^{3}$ with anhydrous hydrogen halides giving high yields of 5 -halogenated derivatives of the arachno-6,9- $\mathrm{C}_{2} \mathrm{~B}_{8} \mathrm{H}_{14}$ dicarbaborane ${ }^{4}$. The course of the reaction is best explained as a consequence of stereoselective addition of hydrogen halides to the $\mathrm{B}_{(5)}-\mathrm{C}_{(6)}$ bond within the framework of $\left[6,9-\mathrm{C}_{2} \mathrm{~B}_{8} \mathrm{H}_{10}\right]^{2-}$. Slightly hydrated hydrogen fluoride was found to yield oxidoderivative $5,5^{\prime}-\mathrm{O}-\left(6,9-\mathrm{C}_{2} \mathrm{~B}_{8} \mathrm{H}_{13}\right)_{2}$ as a result of the addition of water ${ }^{1,2}$. We now report a more convenient preparative route to the latter species and discuss the structure of compounds with the $5,5^{\prime}$-linkage of two arachno-6,9- $\mathrm{C}_{2} \mathrm{~B}_{8} \mathrm{H}_{13}$ moieties (for numbering see Fig. 1).

Reaction of the $\left[6,9-\mathrm{C}_{2} \mathrm{~B}_{8} \mathrm{H}_{10}\right] \mathrm{Na}_{2}$ salt (I) with concentrated sulphuric acid gives rise to two main products, $5,5^{\prime}-\mathrm{O}-\left(6,9-\mathrm{C}_{2} \mathrm{~B}_{8} \mathrm{H}_{13}\right)_{2}(I I)$ and $5,5^{\prime}-\mathrm{OSO}_{2} \mathrm{O}-(6,9-$ $\left.-\mathrm{C}_{2} \mathrm{~B}_{8} \mathrm{H}_{13}\right)_{2}(I I I)$. Compound $I I$ is identical with the main product of the reaction of anion I with c. 97% hydrogen fluoride ${ }^{1,2}$ and the mass and NMR spectral data of $I I I$ are clearly compatible with the $\mathrm{B}(5)-\mathrm{OSO}_{2} \mathrm{O}-\mathrm{B}_{\left(5^{\prime}\right)}$ linkage of two 6,9-- $\mathrm{C}_{2} \mathrm{~B}_{8} \mathrm{H}_{13}$ subunits.

There are two possible modes of the linkage, the first one producing symmetrical σ, ϱ^{\prime}-derivative (A), and the second one, leading to a $(+)$ and $(-)$ pair of σ, σ^{\prime} - and $\varrho, \varrho^{\prime}$-enantiomorphs (B) (the depicted basic orientation is that with open hexagonal faces turned downwards, $\mathrm{B}_{(1-4)}$ atoms are omitted for clarity, $\mathrm{X}=\mathrm{O}$ and/or $\mathrm{OSO}_{2} \mathrm{O}$. Symbols σ and ϱ denote clockwise and anticlockwise numbering ${ }^{5}$, respectively).

The ${ }^{11} \mathrm{~B}$ NMR spectra of both compounds $I I$ and $I I I$, consisting of one $\mathrm{B}_{(5)}$ singlet and seven doublets of equal intensisties, suggest the symmetrical alternative A. The

[^0]results of the recent X-ray diffraction study ${ }^{6}$ on compound II produced conclusive evidence in support of this constitution.

The only way how to achieve the found explicit formation of the σ, ϱ^{\prime}-derivatives $I I$ and $I I I$ is the dehydration of two molecules of an unstable $5-\mathrm{HO}-6,9-\mathrm{C}_{2} \mathrm{~B}_{8} \mathrm{H}_{13}$ derivative ${ }^{1.2}$ by excess sulphuric acid. An alternative mechanism, such as stepwise reaction of water or sulphuric acid with two molecules of anion I, would also produce the asymmetrical derivative B.

EXPERIMENTAL

${ }^{1} \mathrm{H}(200 \mathrm{MHz})$ and ${ }^{11} \mathrm{~B}(64 \cdot 18 \mathrm{MHz})$ NMR spectra were obtained on a Varian XL-200 equipment in deuteriochloroform at $25^{\circ} \mathrm{C}$. Chemical shifts are given in δ (ppm, referenced to tetramethyl-

C
0 H

Fig. 1
Gross geometry and numbering system of arachno-6,9- $\mathrm{C}_{2} \mathrm{~B}_{\mathbf{8}} \mathrm{H}_{14}$

A

B

Fig. 2
Simplified representation of the two possible modes of the $5,5^{\prime}$-linkage of $6,9-\mathrm{C}_{2} \mathrm{~B}_{8} \mathrm{H}_{13}$ subunits ($\mathrm{X}=\mathrm{O}$ or $\mathrm{OSO}_{2} \mathrm{O}, \mathrm{B}(1-4)$ atoms omitted for clarity). Basic orientation is that with open hexagonal faces turned downwards, symbols σ and ϱ denote clockwise and anticlockwise numbering ${ }^{6}$, respectively
silane and $\mathrm{BF}_{3} . \mathrm{O}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$, positive values downfield). TLC was performed on Silufol sheets (silica gel on aluminium foil) in benzene. Melting points were determined in sealed capillaries and are uncorrected.

$$
\text { aradino-5,5'-O-(6,9-C } \left.\mathrm{C}_{2} \mathrm{~B}_{8} \mathrm{H}_{13}\right)_{2}(I I) \text { and } 5,5^{\prime}-\mathrm{OSO}_{2} \mathrm{O}-\left(6,9-\mathrm{C}_{2} \mathrm{~B}_{8} \mathrm{H}_{13}\right)_{2}(I I I)
$$

Concentrated sulphuric acid (5 ml) was added to a suspension of $I(0.8 \mathrm{mmol}$) in benzene (50 ml) and the mixture was shaken for 3 h . The benzene layer was separated, a new portion of benzene (25 ml) was added and the mixture was stirred for additional 3 h . Combined benzene fractions were evaporated in vacuo to a volume of c .15 ml and placed onto a column ($2.5 \times 30 \mathrm{~cm}$) packed with silica gel. Benzene eluted two main fraction of $R_{F} 0.48$ and 0.20 (checked by TLC). The pure fractions were combined and evaporated in vacuo leaving two white products. The first one was crystallized from benzene-cyclohexane ($1: 1$) to give $0.3 \mathrm{~g}(48 \%)$ of crystals the NMR spectra of which were identical with those of the recently prepared ${ }^{1,2}$ carborane II. The second product was crystallized in the same way to afford $0.2 \mathrm{~g}(24 \%)$ of $I I I$ as crystals nonmelting up to $260^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR spectrum: $\delta 1.24\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{(\mathrm{eq})}\right), 1.05\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{(\mathrm{eq})}\right),--0.15\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{(\mathrm{ax})}\right)$, $-0.32\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{(\mathrm{ax})}\right),-2.66(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mu \mathrm{H}) ;{ }^{11} \mathrm{~B}$ NMR spectrum: $\delta_{\mathrm{B}} 4.92\left(1 \mathrm{~B}, \mathrm{~d}, J_{\mathrm{B}-\mathrm{H}} \mathrm{c} .180\right.$, $\left.\mathrm{B}_{\left(2,2^{\prime}\right)}\right), 1.63\left(1 \mathrm{~B}\right.$, d, c. $\left.170, \mathrm{~B}_{\left(4,4^{\prime}\right)}\right),-3.23\left(1 \mathrm{~B}, \mathrm{~s}, 49, \mathrm{~B}_{\left(5,5^{\prime}\right)}\right),-16.99$ (1 B, d, c. $160 / 45$, $\left.\mathrm{B}_{\left(7.7^{\prime},\right)}\right),-19.29\left(1 \mathrm{~B}, \mathrm{~d}, \mathrm{~B}_{\left(10,10^{\prime}\right)}\right),-20.73\left(1 \mathrm{~B}, \mathrm{~d}, \mathrm{~B}_{\left(8,8^{\prime}\right)}\right),-37.20\left(1 \mathrm{~B}, \mathrm{~d}, 150, \mathrm{~B}_{\left(1,1^{\prime}\right)}\right)$, $-39.40\left(1 \mathrm{~B}, \mathrm{~d}, 150, \mathrm{~B}_{\left(3.3^{\prime}\right)}\right) ; m / z 346$, corresponding to $\left[\mathrm{C}_{4} \mathrm{~B}_{16} \mathrm{H}_{26} \mathrm{SO}_{4}\right]^{+}$.

REFERENCES

1. Štíbr B., Janoušek Z., Plešek J., Jelinek T., Heřmánek S.: J. Chem. Soc., Chem. Commun. 1985, 1365.
2. Šííbr B., Janoušek Z., Plešek J., Jelínek T., Heřmánek S.: This Journal 52, 103 (1987).
3. Štíbr B., Janoušek Z., Baše K., Heřmánek S., Plešek J., Zakharova I. A.: This Journal 49, 1891 (1984).
4. Štibr B., Plešek J., Heřmánek S.: This Journal 39, 1805 (1974).
5. Plešek J., Heřmánek S., Štíbr B.: This Journal 34, 3233 (1969).
6. Solntsev K. A., Kuznetsov N. T., Śtíbr B., Plešek J., Jelínek T.: Koord. Khim., in press.

Translated by the author (B. S.).

[^0]: Collection Czechoslovak Chem. Commun. [Vol. 52] [1987]

